ehealth digital library

Digital library of
the Tanzania
health
community

Space-Time Smoothing of Complex Survey Data: Small Area Estimation for Child Mortality.

Mercer, L. D., Wakefield, J., Pantazis, A., Lutambi, A. M., Masanja, H. and Clark, S. (2015) Space-Time Smoothing of Complex Survey Data: Small Area Estimation for Child Mortality. The annals of applied statistics, 9 (4). pp. 1889-1905. ISSN 1932-6157

[img]
Preview
PDF
Laina D Mercer.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (580kB) | Preview

Abstract

Many people living in low and middle-income countries are not covered by civil registration and vital statistics systems. Consequently, a wide variety of other types of data including many household sample surveys are used to estimate health and population indicators. In this paper we combine data from sample surveys and demographic surveillance systems to produce small area estimates of child mortality through time. Small area estimates are necessary to understand geographical heterogeneity in health indicators when full-coverage vital statistics are not available. For this endeavor spatio-temporal smoothing is beneficial to alleviate problems of data sparsity. The use of conventional hierarchical models requires careful thought since the survey weights may need to be considered to alleviate bias due to non-random sampling and non-response. The application that motivated this work is estimation of child mortality rates in five-year time intervals in regions of Tanzania. Data come from Demographic and Health Surveys conducted over the period 1991-2010 and two demographic surveillance system sites. We derive a variance estimator of under five years child mortality that accounts for the complex survey weighting. For our application, the hierarchical models we consider include random effects for area, time and survey and we compare models using a variety of measures including the conditional predictive ordinate (CPO). The method we propose is implemented via the fast and accurate integrated nested Laplace approximation (INLA).

Item Type: Article
Keywords: Bayesian smoothing, Infant mortality, Small area estimation, Survey sampling
Subjects: Health Systems > Health Information systems
Divisions: Ifakara Health Institute > Health Systems
Depositing User: Mr Joseph Madata
Date Deposited: 21 Sep 2016 10:13
Last Modified: 21 Sep 2016 10:13
URI: http://ihi.eprints.org/id/eprint/3891

Actions (login required)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics